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Abstract. In the framework of algebraic dynamics, we investigate an atom–cavity system with
atomic centre-of-mass motion included. Using nonlinear transformations, the Hamiltonian is
linearized in terms of Lie algebraic generators so that the algebraic dynamical structure of the
system appears quite clear and its solution is easy to handle by an algebraic dynamical method. In
more detail, for the three-level system of � configuration, we show that the momentum recoil of
the atom can be eliminated under certain conditions.

1. Introduction

Quantum-optical interactions of atoms with coherent fields may be studied at different levels
of sophistication. In early works of quantum optics [1, 2] attention was simply concentrated
on the internal atomic transitions and photon states without regarding the external motion of
the atom. However, with the development of cavity quantum electrodynamic techniques, one
needs to describe the system in a more precise standard, and the centre-of-mass recoil of the
atom should be taken into account. Such a consideration is also crucial in studies of many
fields such as the laser cooling of atoms [3, 4] and atomic interferometers [5, 6].

For the case of two-level atoms traversing an optical ring cavity, the exact solution could
be achieved by using either a Laplace transformation or the transformation introduced in [7].
However, it is difficult to apply these two methods to more complex systems—the multi-
level systems because of their nonlinearity. Alternatively, to circumvent this difficulty we
shall employ an algebraic dynamical approach [8] to treat the multi-level systems. The key
idea behind this method is to introduce a canonical transformation for the Hamiltonian and
linearize it in terms of a set of Lie algebraic generators. Such a transformation can be viewed
as the dressed state transformation which has been extensively employed in the investigation
of atom–field interactions over the years [9, 11]. According to algebraic dynamics [8], linear
algebraic dynamical systems are integrable and thus solvable, and their solutions are easy to
handle. Then, by examining the time evolution properties of the system, we show that for a
three-level �-type system the recoil of the atom can be eliminated under certain conditions.
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2. Dynamics of the system

2.1. The two-level case

To illustrate our method, we first consider the simplest situation: a two-level atom with
an energy difference h̄ω0 interacting with a one-mode electromagnetic cavity field which
is quantized. In the rotating wave approximation the Hamiltonian is given by

H = p̂2
x

2m
+ h̄ω0Sz + h̄ωa†a + h̄�(a†S−e−ikx + aS+eikx) (1)

where we take the propagating direction of the cavity field as the x-axis. a and a† denote the
annihilation and creation operators of the quantized radiation field of the cavity with frequency
ω, and k represents its wavenumber. � is the coupling constant between the atom and photons
and is assumed real. Note that in this paper we consider an extended atom coupled to the
electromagnetic field of a unidirectional ring cavity. The model Hamiltonian (1) is just an
improved two-level JC model with the atomic centre-of-mass motion included and quantized
as indicated by its kinetic energy operator (the first term in equation (1)). It is not difficult to
see that if the atomic centre-of-mass motion is neglected (k = 0), the Hamiltonian (1) reduces
to the naive JC model which is the simplest model in quantum electrodynamics. Of course,
in the naive JC model, the cavity loss is neglected for simplicity, the model is thus ideal and
only applicable to a cavity system with rather small loss. Inclusion of cavity loss will result
in increased complexity of the model, and the dissipation due to the cavity loss is usually
described by a non-Hermitian Hamiltonian which is difficult to deal with.

A straightforward analysis of the system shows that there are two invariants: one is the
excitation number operator with the form N = a†a + Sz + 1

2 ; the other is the total momentum
of the system, Ptot = p̂x + h̄ka†a. It is convenient to introduce the following notation:

Pg = Ptot − h̄kN = p̂x − h̄k(Sz + 1
2 ). (2)

Pg is also an invariant of the system which represents the atomic momentum of the ground
state. From equation (2) it is clearly understood that the momentum exchange between the
atom and photons is always connected with a change of atomic internal states, i.e., there is an
interplay between internal and external atomic degrees of freedom. According to equation (2),
we can express the kinetic energy in terms of the internal degree of freedom as follows:

p̂2
x

2m
= 1

2m

[
Pg + h̄k

(
Sz +

1

2

)]2

= 1

2m

(
P 2

g + h̄kPg +
1

2
h̄2k2

)
+

1

2m
(h̄2k2 + 2h̄kPg)Sz.

(3)

Thus, the Hamiltonian can be rewritten as

H = E(N,Pg) + �Sz + h̄�(a†S−e−ikx + aS+eikx) (4)

where,

E(N,Pg) = 1

2m

(
P 2

g + h̄kPg +
1

2
h̄2k2

)
+ h̄ω

(
N − 1

2

)

� = �(Pg) = h̄kPg

m
+

h̄2k2

2m
+ h̄ω0 − h̄ω.

(5)

Knowing that the operators N and Pg are invariants, we can treat them as constants in their
irreducible representations. Now one can verify that the Hamiltonian (4) can be linearized in
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terms of su(2) algebra generators {Sz, N−1/2aS+eikx , N−1/2a†S−e−ikx} which are nonlinear
expressions and obey the following commutation relations:

[Sz,N
−1/2aS+eikx] = N−1/2aS+eikx

[Sz,N
−1/2a†S−e−ikx] = −N−1/2a†S−e−ikx

[N−1/2aS+eikx, N−1/2a†S−e−ikx] = 2Sz.

(6)

To solve the system now becomes a simple task. One can use the following transformation (an
SU(2) group element) to diagonalize the Hamiltonian (4):

Ug = exp

[
θ

N1/2
(aS+eikx − a†S−e−ikx)

]
(7)

where

θ = θ(N, Pg) = − arctan

√
�2

4 + h̄2�2N − �
2

h̄�N1/2
. (8)

In addition, the dressed Hamiltonian is obtained as

H ′ = U−1
g HUg = E(N,Pg) +

√
�2 + 4h̄2�2NSz. (9)

From the above treatment one can find that the new expression for the Hamiltonian in terms
of Lie algebraic generators has clearly manifested its su(2) algebraic dynamical structure and
its solution is easy to handle by the algebraic dynamical method. In the following section we
shall show that the analogous description is also applicable to a more complex system.

2.2. Three-level case

Now we apply the algebraic dynamical method to the three-level system of � configuration,
which is interesting, important, and not treated so far to our knowledge. The three levels of the
atom are denoted as |1〉, |2〉, and |3〉 with corresponding energies Ei (i = 1, 2, 3) respectively.
Assume E3 > E2 > E1, and the dipole-induced transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 are
mediated by photons of two different modes of cavity fields, which are characterized by the
photon operators a1 and a2 with corresponding frequencies ω1 and ω2. As the centre-of-mass
motion of the atom is included, the system is described by the Hamiltonian

H = p2

2m
+

3∑
i=1

Eiσii + h̄ω1a
†
1a1 + h̄ω2a

†
2a2

+h̄g1(σ21a1eik1·r + h.c.) + h̄g2(σ32a2eik2·r + h.c.) (10)

where coupling constants g1 and g2 are assumed to be real, σij = |i〉〈j | are atomic level
transition operators, and k1 and k2 are wavevectors of the two cavity modes. Based on
algebraic dynamical analysis similar to that in the above section, we obtain three invariants of
the system:

N1 = a
†
1a1 + 1 − σ11 N2 = a

†
2a2 + σ33 (11)

Pi = Ptot − h̄k1(N1 − 1) − h̄k2N2 = p + h̄k1σ11 − h̄k2σ33. (12)

Here, N1 and N2 are excitation number operators of the two modes and Ptot = p + h̄k1a
†
1a1 +

h̄k2a
†
2a2 is the total momentum of the system. Pi is the atomic momentum connected with the

intermediate level |2〉. The kinetic energy operator of the atom can now be expressed as

p2

2m
= 1

2m
(Pi − h̄k1σ11 + h̄k2σ33)

2

= 1

2m
[P 2

i + (h̄2k2
1 − 2h̄Pi · k1)σ11 + (h̄2k2

2 + 2h̄Pi · k2)σ33]. (13)
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Introducing the following generators by nonlinear transformations

Ar
12 = N

−1/2
1 σ12a

†
1e−ik1·r Ar

23 = N
−1/2
2 σ23a

†
2e−ik2·r

Ar
13 = Ar

12A
r
23 = N

−1/2
1 N

−1/2
2 σ13a

†
1a

†
2e−i(k1+k2)·r

Ar
ii = σii (Ar

ij )
† = Ar

ji (i, j = 1, 2, 3)

(14)

one can verify that the above operators span an su(3) algebra and, especially in the irreducible
eigenspace of the operators N1, N2 and Pi , they form an associative algebra isomorphic to
that spanned by the operators σij . It is easily shown that the following project property
exists:

Ar
ijA

r
kl = δjkA

r
il

3∑
i=1

Ar
ii = 1. (15)

We can now write the Hamiltonian (10) in terms of the operators Ar
ij :

H = E0(N1, N2,Pi ) + �1(Pi )A
r
11 + �3(Pi )A

r
33

+g̃1(N1)(A
r
21 + Ar

12) + g̃2(N2)(A
r
23 + Ar

32) (16)

where

E0(N1, N2,Pi ) = E2 + h̄ω1(N1 − 1) + h̄ω2N2 +
P 2

i

2m

�1(Pi ) = h̄2k2
1

2m
− h̄Pi · k1

m
− (E2 − E1 − h̄ω1)

�3(Pi ) = h̄2k2
2

2m
+

h̄Pi · k2

m
+ E3 − E2 − h̄ω2

g̃1(N1) = h̄
√

N1g1 g̃2(N2) = h̄
√

N2g2.

(17)

Since the operators N1, N2, and Pi can be treated as constants in their common eigenspace,
the Hamiltonian (16) is thus a linearized version of the Hamiltonian (10) in terms of
the su(3) generators Ar

ij , which is completely equivalent to equation (10) without any
approximation.

3. Elimination of recoil effect

Generally, it is certain that atomic transition between two levels will cause a momentum
transfer of photons to the atom (recoil effect). However, for a two-photon process of the
three-level system, there might be a way for the recoil effect to be eliminated. The scheme
can be designed as follows: the two cavity modes must have opposite propagating directions
and identical frequency (of course, their polarization directions are different since they couple
different transitions of the atom), so the two kinds of photons shall possess equal and opposite
momentum; and as doing so, the detunings of the two transitions |1〉 ↔ |2〉 and |2〉 ↔ |3〉 must
be large enough so that the middle level |2〉 can be adiabatically eliminated [10] and become a
virtual state. As a result, the atom will transit between the levels |1〉 and |3〉 without changing
its momentum.

Now let us give it a detailed calculation. As mentioned above, to carry out such a
two-photon resonance process, we must tune the wavenumbers of the two cavity modes as
k2 = −k1 ≡ k1êx and make the cavity frequencies consistent with two-photon energy
conservation: E3 − E1 = h̄ω1 + h̄ω2 = 2h̄ω1. These two conditions straightforwardly
cause the coefficients of the Hamiltonian (16) �1(Pi ) = �3(Pi ) ≡ �(Pi) (here,
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Pi = Pi êx). Now the Hamiltonian can be diagonalized by introducing the canonical
transformation [11]

Ug = exp[α(Ar
13 − Ar

31)] exp[β(Ar
23 − Ar

32)] (18)

with

α = arctan
g̃1

g̃2
β = 1

2
arctan

2
√

g̃2
1 + g̃2

2

�
. (19)

And the transformed Hamiltonian is obtained as

H ′ = U−1
g HUg = E0 + �Ar

11 + λ2A
r
22 + λ3A

r
33 (20)

where,

λ2,3 = λ2,3(N1, N2, Pi) = �

2
±

√(
�

2

)2

+ g̃2
1 + g̃2

2 . (21)

Here ‘+’ is for λ2 and ‘−’ for λ3. Noting the relation of (15), the evo-
lution operator of the system can be calculated straightforwardly (setting h̄ =
1):

U(t) = e−iHt = Uge−iH ′tU−1
g =

3∑
i,j=1

Uij (N1, N2, Pi)A
r
ij (22)

where,

U11(N1, N2, Pi) = e−iE0t (cos2 αe−i�t + sin2 α sin2 βe−iλ2t + sin2 α cos2 βe−iλ3t )

U22(N1, N2, Pi) = e−iE0t (cos2 βe−iλ2t + sin2 βe−iλ3t )

U33(N1, N2, Pi) = e−iE0t (sin2 αe−i�t + cos2 α sin2 βe−iλ2t + cos2 α cos2 βe−iλ3t )

U12(N1, N2, Pi) = e−iE0t sin α sin β cos β(e−iλ3t − e−iλ2t )

U23(N1, N2, Pi) = e−iE0t cos α sin β cos β(e−iλ3t − e−iλ2t )

U13(N1, N1, Pi) = e−iE0t sin α cos α(sin2 βe−iλ2t + cos2 βe−iλ3t − e−i�t )

Uij (N1, N2, Pi) = Uji(N1, N2, Pi) (i, j = 1, 2, 3).

(23)

Assume that at t = 0 the internal state of the atom is in the ground state, and the density
operator of the system can be factorized into three parts:

ρ(0) = |(F (0)〉〈(F (0)| ⊗ |(px
(0)〉〈(px

(0)| ⊗ |1〉〈1| (24)

where

|(F (0)〉 =
∑
n1,n2

Fn1,n2 |n1, n2〉 (25)

|(px
(0)〉 =

∫
dpxC(px)|px〉. (26)

In order to explore the dynamics of the atom we introduce reduced density operators ρA(t)

which describe the internal state of the atom:

ρA(t) =
∫

dpx

∑
n1,n2

〈n1, n2, px |ρ(t)|n1, n2, px〉

=
∫

dpx

∑
n1,n2

〈n1, n2, px |U(t)ρ(0)U †(t)|n1, n2, px〉. (27)
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Since ρA
11 +ρA

22 +ρA
33 = 1, we merely need to investigate the two quantities to denote the internal

state evolution of the atom: the population inversion W(t) = ρA
33(t)−ρA

11(t) and ρA
22(t). From

equations (22), (24) and (27), it is straightforward to obtain

W(t) =
∫

dpx

∑
n1,n2

|C(px − h̄k1 − h̄k2)|2|Fn1+1,n2+1|2|U13(n1 + 1, n2 + 1, px − h̄k2)|2

−
∫

dpx

∑
n1,n2

|C(px)|2|Fn1,n2 |2|U11(n1, n2, px + h̄k1)|2

=
∫

dpx

∑
n1,n2

|C(px)|2|Fn1,n2 |2[|U13(n1, n2, px + h̄k1)|2

−|U11(n1, n2, px + h̄k1)|2] (28)

ρA
22(t) =

∫
dpx

∑
n1,n2

|C(px)|2|Fn1,n2 |2|U12(n1, n2, px + h̄k1)|2. (29)

To investigate the recoil effect of the atom, we need to calculate the momentum-distribution
function of the atom, P(px, t), defined as

P(px, t) = ρPA

px,px
(t) =

∑
n1,n2

3∑
i=1

〈n1, n2, px, i|ρ(t)|n1, n2, px, i〉

=
∑
n1,n2

|Fn1,n2 |2{|C(px)|2|U11(n1, n2, px + h̄k1)|2

+|C(px − h̄k1)|2|U12(n1, n2, px)|2
+|C(px)|2|U13(n1, n2, px + h̄k1)|2}. (30)

As is shown, the above calculations are valid for an arbitrary detuning �. To eliminate
the middle level |2〉, we shall consider the large detuning case, �2 � g̃2

1 + g̃2
2 , namely, the case

where the detuning energy is vastly larger than the normalized interaction strength g̃1,2. Under

this condition, the following approximate relation is valid:
√

(�
2 )2 + g̃2

1 + g̃2
2 − �

2 � g̃2
1 +g̃2

2
�

.

Hence we have sin2 β � g̃2
1 +g̃2

2
�2 → 0 and cos2 β → 1. It should be noted that since g̃1,2

are functions of n1,2 respectively (see equations (11) and (17)), the above large detuning
condition should be satisfied for all photon numbers n appearing in the initial photon number
distribution (25). As the initial condition (25) is known, the large detuning condition can be
checked by numerical calculation. Thus we obtain

|U12(n1, n2, px)|2 � 0

|U13(n1, n2, px + h̄k1)|2 � 4g̃2
1 g̃

2
2

(g̃2
1 + g̃2

2)
2

sin2

(
1

2
λ2t

)
|U11(n1, n2, px + h̄k1)|2 = 1 − |U12(n1, n2, px)|2 − |U13(n1, n2, px + h̄k1)|2

� 1 − 4g̃2
1 g̃

2
2

(g̃2
1 + g̃2

2)
2

sin2

(
1

2
λ2t

)
.

(31)

Now the two quantities expressed by equations (28) and (29) have the following approximate
expressions:

ρA
22(t) � 0

W(t) �
∫

dpx

∑
n1,n2

|C(px)|2|Fn1,n2 |2
[

8g̃2
1 g̃

2
2

(g̃2
1 + g̃2

2)
2

sin2

(
1

2
λ2t

)
− 1

]
.

(32)
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And the momentum distribution function P(px, t) is given by

P(px, t) � |C(px)|2
∑
n1,n2

|Fn1,n2 |2[|U11(n1, n2, px + h̄k1)|2

+|U13(n1, n2, px + h̄k1)|2] � |C(px)|2. (33)

As is expected, the atomic internal level |2〉 is removed and the population oscillates between
levels |1〉 and |3〉. In addition, the atomic momentum distribution P(px, t) retains its initial
value during the whole evolution. Experimentally, the momentum recoil effect can be measured
by looking at the momentum distribution of the outgoing atoms: the fact that it remains in the
initial distribution indicates elimination of the recoil effect.

4. Conclusion

In this paper, within the framework of algebraic dynamics, we have studied the quantum
dynamics of an atom–cavity system as atomic motion is included. We have given a clear
description of the dynamical algebraic structure of the system and obtained its analytical
solution. Based on this, we have shown that the elimination of the momentum recoil effect
of the atom is possible in a three-level system under certain conditions. The results obtained
may be useful in the design of quantum optical experiments.
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